Linear and Nonlinear Rheology of Wormlike Micelles

نویسندگان

  • A. K. Sood
  • Ranjini Bandyopadhyay
  • Geetha Basappa
چکیده

Several surfactant molecules self-assemble in solution to form long, cylindrical, flexible wormlike micelles. These micelles can be entangled with each other leading to viscoelastic phases. The rheological properties of such phases are very interesting and have been the subject of a large number of experimental and theoretical studies in recent years. We will report our recent work on the macrorheology, microrheology and nonlinear flow behaviour of dilute aqueous solutions of a surfactant CTAT (Cetyltrimethylammonium Tosilate). This system forms elongated micelles and exhibits strong viscoelasticity at low concentrations (∼ 0.9 wt%) without the addition of electrolytes. Microrheology measurements of G(ω) have been done using diffusing wave spectroscopy which will be compared with the conventional frequency sweep measurements done using a cone and plate rheometer. The second part of the paper deals with the nonlinear rheology where the measured shear stress σ is a nonmonotonic function of the shear rate γ̇. In stress-controlled experiments, the shear stress shows a plateau for γ̇ larger than some critical strain rate, similar to the earlier reports on CPyCl/NaSal system. Cates et al have proposed that the plateau is a signature of mechanical instability in the form of shear bands. We have carried out extensive experiments under controlled strain rate conditions, to study the time-dependence of shear stress. The measured time series of shear stress has been analysed in terms of correlation integrals and Lyapunov exponents to show unambiguously that the behaviour is typical of low-dimensional dynamical systems. PACS: 83.50.Fc, 83.50.Gd, 05.45.-a

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Flows of Viscoelastic Wormlike Micelle Solutions

The unique rheological properties of viscoelastic wormlike micelle solutions have led to their broad use as rheological modifiers in consumer products such as paints, detergents, pharmaceuticals, lubricants and emulsifiers. In addition, micelle solutions have also become increasingly important in a wide range of industrial and commercial applications including agrochemical spraying, inkjet prin...

متن کامل

The Formation of pH-Sensitive Wormlike Micelles in Ionic Liquids Driven by the Binding Ability of Anthranilic Acid

Wormlike micelles are typically formed by mixing cationic and anionic surfactants because of attractive interactions in oppositely charged head-groups. The structural transitions of wormlike micelles triggered by pH in ionic liquids composed of N-alkyl-N-methylpyrrolidinium bromide-based ILs (ionic liquids) and anthranilic acid were investigated. These structures were found responsible for the ...

متن کامل

Isotropic-to-nematic transition in wormlike micelles under shear

We report on the linear and nonlinear rheology of surfactant solutions of elongated wormlike micelles. The surfactant solutions placed under scrutiny are made of cetylpyridinium chloride (CP+, Cl-j and sodium sahcylate (Na+, Sal-) diluted in 0.5M Nacl~bfine. Both semidilute and concentrated regimes of entangled micelles were investigated. Rheological experiments were performed at ambient temper...

متن کامل

Rheology of Surfactant Solutions

Several surfactant molecules self-assemble in solution to form long, flexible wormlike micelles which get entangled with each other, leading to viscoelastic gel phases. We discuss our recent work on the rheology of such a gel formed in the dilute aqueous solutions of a surfactant CTAT. In the linear rheology regime, the storage modulus G(ω) and loss modulus G(ω) have been measured over a wide f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000